A characterization of the minimal strongly character invariant Segal algebra
نویسندگان
چکیده
منابع مشابه
Invariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملOn Character Space of the Algebra of BSE-functions
Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterizatio...
متن کاملOperator space structure on Feichtinger’s Segal algebra
We extend the definition, from the class of abelian groups to a general locally compact group G, of Feichtinger’s remarkable Segal algebra S0(G). In order to obtain functorial properties for non-abelian groups, in particular a tensor product formula, we endow S0(G) with an operator space structure. With this structure S0(G) is simultaneously an operator Segal algebra of the Fourier algebra A(G)...
متن کاملStrongly concave star-shaped contour characterization by algebra tools
In this paper, we discuss the problem of recovering a star-shaped contour with the assumption that the contour coordinates can be decomposed into damped sinusoids. We propose a signal generation method derived from the array processing paradigm, which yields the center and radius of a circle fitting the contour. Starting from an initialization circle, we propose to estimate the oscillations of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 1980
ISSN: 0373-0956
DOI: 10.5802/aif.795